Many recent perturbation studies have found unintuitive results on what does and does not matter when performing Natural Language Understanding (NLU) tasks in English. Coding properties, such as the order of words, can often be removed through shuffling without impacting downstream performances. Such insight may be used to direct future research into English NLP models. As many improvements in multilingual settings consist of wholesale adaptation of English approaches, it is important to verify whether those studies replicate or not in multilingual settings. In this work, we replicate a study on the importance of local structure, and the relative unimportance of global structure, in a multilingual setting. We find that the phenomenon observed on the English language broadly translates to over 120 languages, with a few caveats.
translated by 谷歌翻译
Providing better language tools for low-resource and endangered languages is imperative for equitable growth. Recent progress with massively multilingual pretrained models has proven surprisingly effective at performing zero-shot transfer to a wide variety of languages. However, this transfer is not universal, with many languages not currently understood by multilingual approaches. It is estimated that only 72 languages possess a "small set of labeled datasets" on which we could test a model's performance, the vast majority of languages not having the resources available to simply evaluate performances on. In this work, we attempt to clarify which languages do and do not currently benefit from such transfer. To that end, we develop a general approach that requires only unlabelled text to detect which languages are not well understood by a cross-lingual model. Our approach is derived from the hypothesis that if a model's understanding is insensitive to perturbations to text in a language, it is likely to have a limited understanding of that language. We construct a cross-lingual sentence similarity task to evaluate our approach empirically on 350, primarily low-resource, languages.
translated by 谷歌翻译
Dense prediction tasks such as segmentation and detection of pathological entities hold crucial clinical value in the digital pathology workflow. However, obtaining dense annotations on large cohorts is usually tedious and expensive. Contrastive learning (CL) is thus often employed to leverage large volumes of unlabeled data to pre-train the backbone network. To boost CL for dense prediction, some studies have proposed variations of dense matching objectives in pre-training. However, our analysis shows that employing existing dense matching strategies on histopathology images enforces invariance among incorrect pairs of dense features and, thus, is imprecise. To address this, we propose a precise location-based matching mechanism that utilizes the overlapping information between geometric transformations to precisely match regions in two augmentations. Extensive experiments on two pretraining datasets (TCGA-BRCA, NCT-CRC-HE) and three downstream datasets (GlaS, CRAG, BCSS) highlight the superiority of our method in semantic and instance segmentation tasks. Our method outperforms previous dense matching methods by up to 7.2 % in average precision for detection and 5.6 % in average precision for instance segmentation tasks. Additionally, by using our matching mechanism in the three popular contrastive learning frameworks, MoCo-v2, VICRegL and ConCL, the average precision in detection is improved by 0.7 % to 5.2 % and the average precision in segmentation is improved by 0.7 % to 4.0 %, demonstrating its generalizability.
translated by 谷歌翻译
Information overloading requires the need for summarizers to extract salient information from the text. Currently, there is an overload of dialogue data due to the rise of virtual communication platforms. The rise of Covid-19 has led people to rely on online communication platforms like Zoom, Slack, Microsoft Teams, Discord, etc. to conduct their company meetings. Instead of going through the entire meeting transcripts, people can use meeting summarizers to select useful data. Nevertheless, there is a lack of comprehensive surveys in the field of meeting summarizers. In this survey, we aim to cover recent meeting summarization techniques. Our survey offers a general overview of text summarization along with datasets and evaluation metrics for meeting summarization. We also provide the performance of each summarizer on a leaderboard. We conclude our survey with different challenges in this domain and potential research opportunities for future researchers.
translated by 谷歌翻译
It is known that neural networks have the problem of being over-confident when directly using the output label distribution to generate uncertainty measures. Existing methods mainly resolve this issue by retraining the entire model to impose the uncertainty quantification capability so that the learned model can achieve desired performance in accuracy and uncertainty prediction simultaneously. However, training the model from scratch is computationally expensive and may not be feasible in many situations. In this work, we consider a more practical post-hoc uncertainty learning setting, where a well-trained base model is given, and we focus on the uncertainty quantification task at the second stage of training. We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities, which is effective and computationally efficient. Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties and easily adapt to different application settings, including out-of-domain data detection, misclassification detection, and trustworthy transfer learning. We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications over multiple representative image classification benchmarks.
translated by 谷歌翻译
In consequential decision-making applications, mitigating unwanted biases in machine learning models that yield systematic disadvantage to members of groups delineated by sensitive attributes such as race and gender is one key intervention to strive for equity. Focusing on demographic parity and equality of opportunity, in this paper we propose an algorithm that improves the fairness of a pre-trained classifier by simply dropping carefully selected training data points. We select instances based on their influence on the fairness metric of interest, computed using an infinitesimal jackknife-based approach. The dropping of training points is done in principle, but in practice does not require the model to be refit. Crucially, we find that such an intervention does not substantially reduce the predictive performance of the model but drastically improves the fairness metric. Through careful experiments, we evaluate the effectiveness of the proposed approach on diverse tasks and find that it consistently improves upon existing alternatives.
translated by 谷歌翻译
Graph processing applications are severely bottlenecked by memory system performance due to low data reuse and irregular memory accesses. While state-of-the-art prefetchers using Machine Learning (ML) have made great progress, they do not perform well on graph analytics applications due to phase transitions in the execution and irregular data access that is hard to predict. We propose MPGraph: a novel ML-based Prefetcher for Graph analytics. MPGraph makes three novel optimizations based on domain knowledge of graph analytics. It detects the transition of graph processing phases during execution using a novel soft detection technique, predicts memory accesses and pages using phase-specific multi-modality predictors, and prefetches using a novel chain spatio-temporal prefetching strategy. We evaluate our approach using three widely-used graph processing frameworks and a variety of graph datasets. Our approach achieves 34.17%-82.15% higher precision in phase transition detection than the KSWIN and decision tree baselines. Our predictors achieve 6.80%-16.02% higher F1-score for access prediction and 11.68%-15.41% higher accuracy-at-10 for page prediction compared with the baselines LSTM-based and vanilla attention-based models. Simulations show that MPGraph achieves on the average 87.16% (prefetch accuracy) and 73.29% (prefetch coverage), leading to 12.52%-21.23% IPC improvement. It outperforms the widely-used non-ML prefetcher BO by 7.58%-12.03%, and outperforms state-of-the-art ML-based prefetchers Voyager by 3.27%-4.42% and TransFetch by 3.73%-4.58% with respect to IPC improvement.
translated by 谷歌翻译
Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning.
translated by 谷歌翻译
准确的交通预测对于智能运输系统至关重要。尽管许多深度学习模型已经达到了最新的1小时交通预测,但长期交通预测跨越多小时仍然是一个重大挑战。此外,大多数现有的深度学习流量预测模型都是黑匣子,提出了与解释性和解释性有关的其他挑战。我们开发了图形金字塔自动构造(X-GPA),这是一种基于注意力的空间 - 速率图神经网络,使用了新型金字塔自相关注意机制。它可以从图表上的长时间序列中学习,并提高长期流量预测准确性。与几种最先进的方法相比,我们的模型可以实现高达35%的长期流量预测准确性。 X-GPA模型的基于注意力的分数提供了基于交通动态的空间和时间解释,这些解释会改变正常与高峰时段的流量以及工作日与周末流量的变化。
translated by 谷歌翻译
电力行业正在大力实施智能网格技术,以提高可靠性,可用性,安全性和效率。该实施需要技术进步,标准和法规的发展以及测试和计划。智能电网载荷预测和管理对于降低需求波动和改善连接发电机,分销商和零售商的市场机制至关重要。在政策实施或外部干预措施中,有必要分析其对电力需求的影响的不确定性,以使系统对需求的波动更加准确。本文分析了外部干预的不确定性对电力需求的影响。它实现了一种结合概率和全局预测模型的框架,使用深度学习方法来估计干预措施的因果影响分布。通过预测受影响实例的反事实分布结果,然后将其与实际结果进行对比来评估因果效应。我们将COVID-19锁定对能源使用的影响视为评估这种干预对电力需求分布的不均匀影响的案例研究。我们可以证明,在澳大利亚和某些欧洲国家的最初封锁期间,槽通常比峰值更大的下降,而平均值几乎不受影响。
translated by 谷歌翻译